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We evaluate the advantage of using space–time coding in order to increase the tolerance of fiber-optic communica-
tions systems to polarization-dependent loss (PDL). Focusing on three particular codes, the Golden Code, the Silver
Code (SC), and the Alamouti Code (AC), we calculate the amount of average PDL that can be tolerated for a given
signal-to-noise ratio margin that is designed into the system. The SC is shown to be optimal in the case of low to
moderate PDL, whereas, in the case of extreme PDL, the AC shows the best performance. © 2010 Optical Society of
America
OCIS codes: 060.2330, 060.1660.

One of the most attractive features of coherent optical
communications is that manipulation of the entire optical
signal (phase andamplitude) canbeperformed in the elec-
tronic domain. As a result, impairments that are caused by
unitary processes, such as chromatic dispersion or polar-
ization mode dispersion, can be eliminated by the use of
electronic signal processing [1]. Polarization-dependent
loss (PDL), on the other hand, is a nonunitary phenomen-
on and, therefore, it cannot be compensated at the recei-
ver, even inprinciple. ThePDLof a system results from the
accumulated contributions of a large number of inline ele-
ments that are present along the optical link. Since the
polarization states and relative orientations of these ele-
ments are random and time dependent, the overall instan-
taneous PDL changes randomly, both in frequency and in
time [2]. The main consequence of this situation is a cor-
responding randomization of the received signal-to-noise
ratio (SNR) [3,4]. To deal with PDL, designers allocate an
SNR margin. In other words, the system is designed to
operate with a higher SNR than what is needed in the ab-
sence of PDL so that the probability that a system outage
occurs ismaintained below the commonly quoted value of
4 × 10−5 (equivalent to 20 min per year). An SNR margin
of 1 dB that is designed into a coherent polarization-
multiplexed system is known to buy immunity to as little
as 1 dB of average PDLwhen optimized detection is used.
In many situations, this reality puts significant stress on
component makers and system designers. The problem
of increasing the tolerance of fiber-optic systems to
PDL is therefore a subject of utmost importance [5].
In this work we examine the advantage that can be

gained from the use of space–time codes in terms of the
tolerance of systems to PDL. We focus in particular on
two types of codes; the Golden Code (GC) [6] and the
Silver Code (SC) [7], which have been recently attracting
significant attention in wireless applications [8]. We ex-
pand on the results of [9,10], with the main difference
being that, unlike in [9,10], where PDL was modeled
as a constant parameter, we incorporate the codes into
a full model of PDL in which the actual statistics of this
phenomenon is explicitly taken into account. By doing
so, we are able to quantify the advantage in the use of

such codes in terms of the outage parameters and, in par-
ticular, in terms of the amount of average PDL that can be
tolerated by the system for a given SNR margin that is
allocated for this phenomenon. We find that both the
GC and the SC are very well suited to deal with the most
relevant range of PDL values (between 0 and 6 dB of
average PDL), in which they yield similar results. In the
range of low to moderate PDL values (0 to 5 dB of aver-
age PDL), these codes closely follow the curve that de-
scribes the PDL dependence of the information capacity,
with the SC having a small advantage. For comparison,
we also present the results of the 2 × 2 version of the Ala-
mouti Code (AC), whose main advantage is in its simpli-
city. As expected, the AC is found to be irrelevant in the
range of low PDL values, since it incurs an inherent 3 dB
loss in transmission rate. Nonetheless, we find it interest-
ing that, in the case of very large PDL, the AC performs
notably better than the other two codes.

The general idea of space–time coding [11] is that, in-
stead of transmitting two mutually independent streams
of data in the two polarization channels, controlled de-
pendencies between the symbols are introduced. These
dependencies reduce the sensitivity of the system to non-
unitary distortions, such as those generated by the effect
of PDL. Both the GC and the SC can be categorized as
2 × 2 space–time block codes. The transformations that
are used to construct the SC and GC are described in
[6,7]. They both map a, b, c, and d, four data symbols from
a QAM constellation, into four alternative complex num-
bers, p1, q1, p2, and q2.

The symbols p1 and q1 are transmitted in two consecu-
tive time slots over one polarization channel, whereas p2
and q2 are transmitted over the other polarization chan-
nel. Notice that, since four complex data values are sim-
ply replaced by four different complex values (of the
same square average), the GC and SC encoding intro-
duces no reduction in transmission rate.

The AC scheme is the simplest of the three and is given
by the relations p1 ¼ a, p2 ¼ b, q1 ¼ −a�, and q2 ¼ b�. It
maps two complex input values into four symbols, imply-
ing an inherent loss in the transmission rate. To compen-
sate for this, the Alamouti-based scheme must transmit a
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more refined constellation consisting ofM2 constellation
points, as opposed to M in the prior two cases. As we
show in what follows, the penalty that is caused by the
rate loss, which in our setting is approximately 3 dB, is
more than compensated for when the average PDL is
large. As always, a major issue when considering coded
communications is the decoding complexity, and that is
because all four symbols need to be decoded simulta-
neously for optimal detection. This reality is, however,
not flagrantly inconsistent with the complexity of re-
cently demonstrated optical receivers. Owing to their ef-
ficiency in battling the effects of fading, the GC and the
SC are considered to be leading candidates in the most
recent wireless communications standards.
The results presented throughout this Letter were ob-

tained using the numerical procedure whose details are
presented in [12], with the optical link represented as
consisting of ten statistically independent PDL sections
and with the local PDL vector of each section being Gaus-
sian distributed. This has been known to be the most nat-
ural assumption regarding the PDL distribution [2,13], in
the absence of more specific knowledge about the
structure of the optical link [14]. A total of 106 link reali-
zations were performed for every combination of link
parameters.
The codes are implemented into the system according

to the schematic illustrated in Fig. 1. The two separate
streams of data are each encoded independently using a
standard forward error correcting (FEC) encoder. We re-
fer to this stage as outer encoding. Then, the MIMO code
is applied in blocks of four symbols, two from each infor-
mation channel, generating the encoded symbols that are
transmitted over the two polarizations in the fiber. The
receiver consists of the complementary decoding ele-
ments. Namely, the signals first go through the MIMO de-
coder and, after that, the outer FEC decoding is applied.
In order for the scheme to operate properly, the bit-error
rate (BER) that follows the MIMO decoder must be lower
than the BER threshold of the outer FEC. Typical BER
threshold values of outer FEC codes that are currently
deployed in fiber-optic systems are between 10−3 and
10−4. A convenient way of quantifying the effect of PDL
on system performance is to define an equivalent SNR
penalty parameter [12,15] η that is equal to the factor
by which the SNR needs to be increased in order to com-
pensate for the penalty induced by a given realization of
the PDL in the fiber link. Since the PDL of the link
changes randomly, so does the η parameter, and there-

fore it must be represented in statistical terms.
Figure 2 shows the complementary cumulated distribu-
tion of η, i.e., the probability that η exceeds the value in-
dicated by the horizontal axis in the figure. Of particular
interest is the outage value of the SNR penalty ηout, which
is the value of η that is exceeded with probability equal
to, or smaller than, the allowed outage probability of the
system Pout ¼ 4 × 10−5. The outage SNR penalty ηout is
equal by definition to the system SNR margin that needs
to be allocated in order to avoid outages with the prob-
ability of 1 − Pout. The distributions in Fig. 2, as well as in
the rest of this Letter, were calculated for the quadrature
phase-shift keying (QPSK) constellation in each polariza-
tion channel, and the baseline SNR was selected such
that the raw BER (before FEC decoding) was 10−3, con-
sistent with the typical range of available FEC thresh-
olds. The solid and the dashed curves correspond to the
GC and to the SC, respectively. The blue dashed–dotted
curves in Figs. 2(b)–2(d) represents the AC. Evidently,
the SC has a small advantage at small average PDL va-
lues, but, at larger PDL, it is the GC that assumes a small
advantage. The red solid curve corresponding to the re-
sult without space–time coding differs very significantly
from the other two. Naturally, the AC is inferior to the
two other codes at small PDL values, where the rate loss
that is inherent to its operation is significant. Yet, in the
limit of large PDL, it matches the performance of the
other two codes and eventually exceeds it. Figure 3 sum-
marizes a large number of simulations of the type de-
scribed in the context of Fig. 2. The horizontal axis in
Fig. 3 is the average PDL of the link, and the vertical axis
shows the SNR that is required in order for the raw BER
of the system to remain lower than 10−3 (with probability
of 1 − Pout, where Pout ¼ 4 × 10−5). Once again, the solid
and the dashed curves represent the result of the GC and
the SC, respectively, whereas the dashed–dotted curve

Fig. 1. (Color online) Schematic of coding implementation. ST
stands for space–time.

Fig. 2. (Color online) Complementary cumulated distribution
of the PDL-induced SNR penalty for average PDL of (a) 3, (b) 5,
(c) 8, and (d) 10 dB; w/o refers to the calculation without
space–time coding. Dotted horizontal line indicates the outage
probability of 4 × 10−5. The curve corresponding to the AC is not
shown in the 3 dB case, as it is almost outside the range of
plotted values. Similarly, the curve without ST coding is outside
the range of displayed values in parts (c) and (d). All curves
were obtained for QPSK constellations.

3548 OPTICS LETTERS / Vol. 35, No. 21 / November 1, 2010



shows the result of the AC. The result without space–
time coding is marked by w/o. Also shown in the figure
is the SNR that is required for the Shannon capacity of
the PDL impaired channel to exceed 2 bits per symbol
in each polarization channel (4 bits altogether), similar
to the original QPSK constellation. The outage capacity
was defined and discussed in the context of PDL in [16]
and is equal to the capacity (mutual information between
the input and output of the channel, assuming an isotro-
pic Gaussian input) value that is exceeded with the prob-
ability of 1 − pout [17]. The gap between the capacity
curve and the actual performance curves with and with-
out the GC is known as the gap to capacity and, as can be
seen (from the case of 0 PDL), it is caused, among other
reasons, by the imperfection of the outer FEC code. The
system SNR margin that needs to be allocated for PDL is
obtained by subtracting from the curves in Fig. 3(a) the
baseline SNR value (namely, the SNR value that corre-
sponds to PDL ¼ 0). As is evident in the figure, at low
PDL values, the slope of the curves representing the
the GC and SC is very similar to that of the capacity
curve, providing an idea on the optimality of those codes.
For average PDL values in the range between 1 and
4:5 dB, the margin curve in the SC case is even slightly
lower than that of the capacity-based curve, demonstrat-
ing a slight reduction in the gap to capacity. On the other
hand, consistent with Fig. 2, the AC, which is strongly
inferior to the other codes at low to average PDL, be-
comes the best code at high PDL values. Intuitively, this
can be understood owing to the inherent ability of the AC
to deal with the complete fading of one of the two chan-
nels, which is analogous to its ability to decode with one
receive antenna.

We have considered the benefits that can be obtained
from the use of space–time coding for increasing the PDL
tolerance of fiber-optic systems. By accurately modeling
the statistics of PDL, we quantified the benefit of coding
in terms of the tolerable PDL for a given SNR margin. For
example, with an SNR margin of 1 dB, the PDL tolerance
can be increased from 1 to approximately 3:5 dB by the
use of the considered codes, while bigger gains can be
realized when a larger margin is allocated. The best per-
forming code in the low average PDL regime was found
to be the SC, with the GC performance lagging slightly.
The AC was found to perform best in the very large
PDL limit.
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